Амортизаторы

Консультация специалиста

(Скирко Олег, выдержки из статьи для журнала"Авиация общего назначения")

Вопрос: Каким должно быть шасси для СЛА, исходя из специфики его использования?

Ответ: Учитывая то, что СЛА это летательный аппарат:

  • предназначенный для любительских полетов зачастую с неподготовленных площадок
  • часто оснащеный двигателями, не рекомендованными для применения на воздушных судах,
  • шасси у него должно быть с повышенными требованиями к восприятию взлетно-посадочных нагрузок, к поглощению ударов и устойчивости против козления, а также оснащено надежными тормозными устройствами.

    Занимаясь проектированием, постройкой и эксплуатацией различного рода летательных аппаратов мы регулярно сталкивались с проблемой надежных элементов для шасси.

    Прочно обосновавшаяся в конструкции шасси СЛА рессора - это достаточно элегантное, аэродинамически чистое решение. Привлекает также ее видимая простота и кажущаяся дешевизна. Но является ли рессора именно тем элементом, который поможет непрофессиональному пилоту не поломать самолет в случае вероятной ошибки при выполнении посадки, или опытному пилоту сесть с отказавшим двигателем на ограниченную площадку с неопределённым рельефом? При отсутствии элемента, поглощающего энергию удара, рессора остается просто пружиной с практически линейной зависимостью деформации от нагрузки. С ростом нагрузки рессора деформируется, пока не поломается, а если удар оказался не очень сильным, то накопленная энергия передается обратно самолету, отсюда большая вероятность козления.

    Автомобильная амортизационная стойка как альтернатива рессоре, в некоторых случаях выглядит лучше, но учитывая то, что автомобильные амортизаторы изначально созданы для автомобилей с их нагрузками, спецификой работы, то практически не возможно подобрать подходящий по параметрам амортизатор, а присутствие пружины делает шасси достаточно тяжелым. Ведь нормальный стандартный автомобиль или мотоцикл не рассчитывается на удар о землю с вертикальной скоростью 3-4м/с. А работа гидравлики направлена на то, чтобы обеспечить в первую очередь плавность движения.

    Единственный выход- это применение традиционного авиационного решения на базе жидкостно-газовых (гидропневматических) амортизаторов. Это является аксиомой, что гидропневматик обладает максимальной способностью поглощать энергию удара при посадке, обеспечивая при этом наибольшую весовую эффективность. Существует большое разнообразие конструктивных исполнений. Основываясь на этом, можно выбрать максимально дешевый амортизатор, с достаточным ресурсом, с возможностью эксплуатировать его в обычных условиях без наличия специального оборудования для подкачки.

    В большой авиации под каждый самолет проектируется свой амортизатор. Это объясняется достаточно высокими требованиями к элементам шасси и к самолету в целом со стороны норм летной годности.

    В случае же со СЛА ситуация выглядит гораздо проще. Диапазон взлетных весов летательных аппаратов колеблется около 450кг., схемы шасси не дают большой разницы в нагрузках на амортизационную стойку. В связи с этим возможно разработать универсальный амортизатор, который можно применить на любом летательном аппарате, что и было сделано нами.

    Выполнив необходимые расчеты и проверив их на опытных стендах мы пришли к выводу, что варьируя с объемом масла и давлением закачки при одном и том же железе, можно получить диаграмму обжатия удовлетворяющую широкому диапазону технических требований. А проводя испытания на специально созданном дропстенде мы подобрали конструкцию клапана обеспечивающую удар об землю без отскока и в тоже время с достаточно быстрым возвратом на обратном ходе.

    Следующим шагом было освоение производства шлифованных штоков, поиска надежных высоко ресурсных уплотнений. В результате работы над решением всех этих проблем мы научились создавать амортизаторы под конкретные технические условия заказчика, точно соблюдая заданные параметры.

    Исходными данными для проектирования являются:

  • стояночная нагрузка на стойку
  • величина обжатия при стояночной нагрузке
  • нагрузка при полном обжатии, которая определятся исходя из максимальной посадочной перегрузки и кинематики шассие
  • рабочий ход
  • После создания универсального амортизатора для СЛА, используя стандартные конструктивные схемы, было освоено производство амортизаторов практически на все случаи жизни. Это амортизаторы сжатия и растяжения, скомпонованные штоком вверх и штоком вниз, со стояночной нагрузкой на амортизационную стойку от 80 до 1000 кг.

    Давление закачки в общем случае не превышает 20атм., что делает возможным подкачку амортизатора ручным насосом для амортизаторов горного велосипеда. Применяемые полиуретановые уплотнения и высоко ресурсные пары трения делают срок службы амортизатора превосходящим ресурс планера самолета.

    Один из вариантов этого амортизатора, созданный для мотоцикла, проехал в условиях наших дорог более 5000 км, что соответствует 25 000 полетам. При этом следов износа, препятствующих нормальной работе, замечено не было.

    В настоящее время эти амортизаторы ставят в разных частях Земного Шара на носовые вилки мотодельтапланов и носовые стойки самолетов, на основные стойки мотопарапланов, мотодельтапланов, автожиров и самолетов. Следует заметить, что на летательных аппаратах с повышенным риском приземления с высокой вертикальной скоростью, таких как мотопараплан и автожир, применение гидропневматиков особенно оправдано. Также обоснованным становится применение гидропневматиков при росте взлетного веса в связи с установкой тяжелых силовых установок на базе мощных автомобильных двигателей и двигателей ROTAX-912(914).

    Дилеры

    OOO «Аэромеханика»
    Москва, Россия
    +7 495 506 88 33
    am@gyroplane.ru
    www.gyroplan.ru

    Тормоза и комплектующие
    Контакты

    Киев, Украина
    +38 050 526 12 42
    +38 044 383 04 19
    acenter@acenter.com.ua